Synthesis of (R)-2-methyl-4-deoxy and (R)-2-methyl-4,5-dideoxy analogues of 6-phosphogluconate as potential inhibitors of 6-phosphogluconate dehydrogenase †

Christophe Dardonville and Ian H. Gilbert*

Welsh School of Pharmacy, Cardiff University, Redwood Building, King Edward VII Avenue, Cardiff, UK CF10 3XF

Received 28th October 2002, Accepted 25th November 2002 First published as an Advance Article on the web 14th January 2003

The synthesis of (2R)-2-methyl-4,5-dideoxy and (2R)-2-methyl-4-deoxy analogues of 6-phosphogluconate is described. The synthetic strategy relies on the Evans aldol reaction for the installation of the chiral centres in the 2- and 3-positions. The selective phosphorylation at the primary alcohol function of (2R,3S)-3,6-dihydroxy-2-methylhexanoic acid benzyl ester (5) and (2R,3S,5S)-3,5,6-trihydroxy-2-methylhexanoic acid benzyl ester (20) was achieved with dibenzyl phosphochloridate and dibenzyl phosphoiodinate respectively, working at low temperature. (2R,3S)-3-Hydroxy-2-methyl-6-phosphonoxyhexanoic acid (9) was obtained in 25% overall yield from 4-benzyloxybutanol and (2R,3S,5S)-3,5-dihydroxy-2-methyl-6-phosphonoxyhexanoic acid (28) in 10% overall yield from L-malic acid.

Introduction

The parasitic infection Human African Trypanosomiasis (sleeping sickness) is a major health problem in sub-Saharan Africa causing an estimated 66 000 deaths per year. The treatment of African Trypanosomiasis is unsatisfactory, with most of the drugs in use giving rise to serious side effects, increasing problems of resistance and, in some cases, poor blood-brain barrier permeability. Thus, there is an urgent need for new drugs to treat sleeping sickness.

Bloodstream forms of *Trypanosoma brucei* (*T. brucei*), the causative organisms of sleeping sickness, exclusively produce energy (ATP) through glycolysis, making the inhibition of any of the glycolytic enzymes a potential therapeutic approach.³ In our search for new anti-trypanosomal agents, we decided to target the enzyme 6-phosphogluconate dehydrogenase (6PGDH), the third enzyme of the pentose phosphate pathway (PPP).⁴ The PPP is responsible for generation of NADPH (a biosynthetic intermediate used in protection against oxidative stress) and ribulose 5-phosphate (used in the biosynthesis of nucleotides) (Fig. 1).

A number of reasons suggest that 6PGDH could be a good target for chemotherapy 5 and inhibitors have been found that are selective for 6PGDH of *T. brucei*. In particular, 2-deoxy-6-phosphogluconate (Fig. 1) is a selective inhibitor of the *T. brucei* enzyme. 6

Crystallographic studies of the sheep liver as well as the *T. brucei* enzyme have shown differences at the active site that it should be possible to exploit for selective drug design. A particular point of interest is a larger binding pocket for the trypanosome enzyme in the region of the 2-OH group of the substrate. Moreover, molecular modelling studies on the interaction between 6PG and the *T. brucei* enzyme revealed a number of important functionalities involved in the interaction. In particular, the 4-OH group does not appear to have strong interactions with the enzyme and we wanted to probe the importance of the 5-OH in determining activity and selectivity. These findings were used to design a series of (2*R*)-2-methyl-

2-deoxy-6-phosphogluconate

Fig. 1

4,5-dideoxy and (2R)-2-methyl-4-deoxy analogues of 6PG (Fig. 1) that will allow us to carry out Structure Activity Relationship studies to probe the active site of 6PGDH enzyme.

Results and discussion

General synthetic approach

The synthetic strategy relies on the Evans aldol reaction for the installation of the chiral centres in the 2- and 3-positions. The use of boron Z-enolates of chiral oxazolidin-2-one derivatives allows high diastereoselectivity in the reaction and formation of almost exclusively the *syn* aldol product. The second step is the exchange of the chiral auxiliary with a benzyl ester protecting group that can be removed in very mild conditions (*i.e.* catalytic hydrogenolysis). Finally, introduction of the phosphate moiety with protected phosphorus(v) reagents is achieved selectively at the primary alcohol working at low temperature.

† Electronic supplementary information (ESI) available: experimental

OPO₃²
OPO₃

A previous approach ¹¹ in which we tried to remove the chiral auxiliary at the end of the synthesis just before the deprotection of the phosphate turned out to be unsuccessful because of the sensitivity of the phosphate to the reaction conditions used (LiOH–H₂O₂). The phosphate group was cleaved using these reaction conditions and the main product obtained was a sevenmember ring lactone that resulted from the intramolecular attack of the terminal 5-OH to the carbonyl at C1.

Synthesis of (2R)-2-methyl-4,5-dideoxy analogues (Scheme 1)

Swern oxidation ¹² of 4-benzyloxybutanol **1** yielded 4-benzyloxybutyraldehyde ¹³ **2** in 87% yield. Aldehyde **2** was used in the boron aldol reaction ¹⁴ with (4R)-4-benzyl-3-propionyloxazolidin-2-one ¹⁵ and freshly prepared dibutylboron triflate ‡ ¹⁶ to afford the *syn* aldol product (2R,3S)-3 in 70% yield.

Hydrogenolysis of the benzyl protecting group with 10% Pd–C followed by lithium benzyloxide transesterification ¹⁷ allowed

† Triflate = trifluoromethanesulfonate.

isolation of the benzyl ester 5 in only low to moderate yield (13–50%). Since we thought that the presence of the free hydroxy groups could be in part responsible for the low to moderate yields, diol 4 was first protected as a THP ether and the crude THP-protected 4 reacted with three equivalents of lithium benzyloxide. In this reaction, excess benzyl alcohol, generated as a by-product, has the same $R_{\rm f}$ value as the THP-protected benzyl ester product, which makes the purification of the intermediate difficult. Hence, the crude reaction mixture was treated with Dowex acidic resin to remove the THP protecting groups, and 5 could be isolated by chromatography (overall yield for the three steps from 4–5 is 56–77%).

Selective phosphorylation of **5** at the primary alcohol group was accomplished by adding 1.3 eq. of dibenzyl phosphochloridate (freshly prepared from dibenzyl phosphate and sulfuryl chloride in CCl₄) ¹⁸ at 0 °C to a solution of **5** in pyridine. That phosphorylation occurred on the primary alcohol was established by the diagnostic downfield ¹H NMR chemical shift of the CH₂ protons at C6 (4.06 ppm compared to 3.70 ppm for **5**) and the unaffected CH proton at C2 (3.9 ppm).

To probe the necessity of the 3-OH, the 3-hydroxy was derivatised as follows: phosphate 6 was acetylated with acetic anhydride and a catalytic amount of DMAP in pyridine to afford 7. The methylated derivative 8 was obtained by reaction of 5 with silver(II) oxide and MeI in CH₃CN at 60 °C for 3 days. André et al. 19 reported that among the numerous procedures of alkylation of hydroxy groups described in the literature, it appeared that the one using MeI and Ag₂O was the most efficient for substrates possessing an ester or a lactone group.²⁰ However, the main products we obtained in this reaction were the transesterification product **8b** (47%) and recovered starting material 6 together with 20% of the expected 8a (39% conversion). An attempt at methylation of 6 with MeI and NaH failed and no expected product was detected in the reaction mixture. Finally, the free phosphate derivatives 9, 10 and 11 were obtained quantitatively by hydrogenolysis of the benzyl protecting groups.

Synthesis of (2R)-2-methyl-4-deoxy analogues (see Scheme 3)

The strategy used for the preparation of the 4-deoxy analogues was similar to that used for the 4,5-dideoxy analogues, using the aldehyde (3S)-15 ^{19,21} in the boron aldol reaction. Enantio-pure (3S)-15 was prepared in four high-yielding steps from L-malic acid (Scheme 2).²²

Scheme 2

Scheme 3

Diastereoselective boron aldol reaction with aldehyde 15 and (R)-4-benzyl-3-propionyloxazolidin-2-one afforded a mixture of the expected (2R,3S)-acetonide 16 (60%) and the deprotected triol (2R,3S)-17 (18%, Scheme 3). The latter could be protected again by reaction with acetone and catalytic toluenep-sulfonic acid. Direct removal of the chiral auxiliary by BnOLi transesterification ¹⁷ gave a mixture of the expected benzyl ester 19 and a by-product arising from the opening of the oxazolidinone ring and an elimination process. Moreover, BnOH has the same $R_{\rm f}$ value as the desired product 19, making its purification by chromatography rather difficult. Since the direct transesterification reaction did not give good results, the benzyl ester 19 was prepared in two steps: the chiral auxiliary was first removed with LiOH-H₂O₂, ¹⁷ affording the pure acid 18 in good yield (86%) by acid-base work-up. Acid 18 was subsequently esterified with benzyl bromide and K₂CO₃ in DMF affording 19 in 78% yield (67% for two steps).

Removal of the isopropylidene protective group is not as straightforward as it seems because of the presence of the benzyl ester functionality and therefore the risk of debenzylation during acid hydrolysis or transesterification when using alcohol as solvent. This behaviour was observed when Dowex 50WX2 in MeOH was used to hydrolyse the acetonide and the methyl ester derivative was obtained as a major by-product. Eventually, CuCl₂·2H₂O in 'PrOH was used according to the procedure of Iwata *et al.*²³ to afford the triol **20** in good yield (69%).

Selective phosphorylation at the primary hydroxy group was first attempted with dibenzyl phosphochloridate giving only low yield (< 20%) of the phosphate **21**. The fact that starting material **20** was always recovered in these attempts prompted us to use the more reactive dibenzyl phosphoiodinate (prepared from (BnO)₃P and I₂ in CH₂Cl₂)²⁴ as the phosphorylating agent. Working at -78 °C allowed the preparation of **21** in 54% yield. However, higher temperatures (*i.e.* -10 °C to +15 °C over 2 h) resulted in the lactonisation of the product to **21b** (Scheme 4).²⁵

Furthermore, although two equivalents of dibenzyl phosphoiodinate are used to drive the reaction, the second equivalent should be added in small portions, controlling

progression of the reaction to avoid bis-phosphorylation of the product (this behaviour was observed when 2 eq. of reagent were added at once).

Acetylation of 21 yielded 23 (90%) whereas methylation with MeO₃BF₄-2,6-di-*tert*-butyl-4-methylpyridine (DTBMP) CH₂Cl₂ afforded a mixture of the mono and bismethylated products 24 and 25 respectively. These two compounds were isolated by flash chromatography with 21% and 62% yield respectively. The last step of the synthesis, consisting of hydrogenolysis of the benzyl protective group with Pd-C, was successfully carried out with 23. However, in the case of 21, which contains two free hydroxy groups, hydrogenolysis led to a mixture of two phosphorus compounds, possibly due to the migration of the phosphate to the adjacent free hydroxy group. Phosphate migration during hydrogenolysis is a well-known phenomenon, in inositols for instance,²⁶ where migration of fully protected phosphate around the ring can occur. On the contrary, migration of phosphate in fully deprotected inositol 1-phosphate only occurs in strong acid or strong base. Moreover, cyclic phosphate formation is a potential side reaction where vicinal diols are present.27 Some authors have successfully prepared some L-glycero-D-manno-heptoside phosphate derivatives by catalytic hydrogenolysis of their fully benzylprotected precursors (no migration was observed in this case).28 Those facts suggested that the protection of the 5-hydroxy of 21 as benzyl ether should reduce the tendency to phosphate migration during hydrogenolysis. Protection of 21 with benzyl trichloroacetimidate and catalytic triflic acid in CH₂Cl₂ was attempted, affording only a moderate yield of 22 (< 25%) in all the attempts carried out. Thus, the 1,3-diol **21** was protected as its benzylidene acetal derivative with benzaldehyde dimethyl acetal and PPTS in DMF to afford **26** (71%).

Unfortunately, hydrogenolysis of either **22** or **26** led to a mixture of two phosphate regioisomers. To circumvent this problem, **21** was protected as a THP ether **27** in high yield (81%) and then subjected to hydrogenolysis ³⁰ followed by mild acidic hydrolysis to remove the THP protecting groups, and afford the phosphate **28** (70%).

Conclusion

An efficient synthetic route to (2R)-2-methyl-4-deoxy and (2R)-2-methyl-4,5-dideoxy analogues of 6-phosphogluconate is reported, starting from 4-benzyloxybutanol 1 and L-malic acid respectively and using boron aldol methodology for the incorporation of the (2S,3R) chiral centres. This general approach is currently being used to prepare more 2-substituted-4-deoxy analogues of 6-phosphogluconate.²⁹

Experimental section

Where applicable, all glassware was oven dried overnight and all reactions were carried out under nitrogen. All dry solvents were purchased from Aldrich or Fluka in sure seal bottles. All reactions were monitored by Thin Layer Chromatography (TLC) using silica gel 60 F₂₅₄ plates (Merck). Column chromatography was performed on Uetikon silica gel C-560 Act (0.035-0.070 mm). The infrared spectroscopy (IR) of the compounds was recorded on a Perkin Elmer 1600 series FTIR spectrometer as films on sodium chloride discs (thin film). $[a]_D$ values were measured on a ADP220 polarimeter (Bellingham & Stanley Ltd) and are given in 10⁻¹ deg cm² g⁻¹. ¹H NMR, ¹³C NMR and ³¹P NMR spectra were recorded on a Bruker Avance DPX 300 MHz spectrometer at 300, 75 and 121 MHz respectively, using the solvent residual peak as internal reference. J values are given in Hz. Elemental analyses were determined on a Perkin-Elmer 240C elemental analyser. Low resolution mass spectra (MS) were recorded on a Fisons VG Platform II spectrometer using electrospray ionisation (ES) technique either in positive or negative ion modes. Mobile phases were acetonitrile-water 1:1 or methanol (ES). High-resolution mass spectra (HRMS) in chemical ionisation (CI) and fast atom bombardment (FAB) were determined by the EPSRC Mass Spectroscopy Centre, Swansea, UK.

(4R)-4-Benzyl-3-[(2R,3S)-6-benzyloxy-3-hydroxy-2-methyl-hexanoyl]oxazolidin-2-one (3)

Freshly prepared dibutylboron triflate ¹⁶ (2.35 cm³, 9.3 mmol) was added to a solution of (3R)-3-propionyl-4-benzyloxazolidin-2-one (1.67 g, 7.2 mmol) in dry CH₂Cl₂ (15 cm³) at 0 °C. Et₃N (1.3 cm³, 9.3 mmol) was then added keeping the internal temperature below +3 °C. The resulting yellow solution was cooled to -78 °C and aldehyde 2 (1.53 g, 8.6 mmol) was added dropwise. The clear yellow solution was stirred for 1 h 15 min at 0 °C. The reaction was quenched with 7 cm³ of phosphate buffer (pH 7.2) and 20 cm³ of MeOH. Then, 10 cm³ of a 2:1 solution of MeOH-H₂O₂ (30% in water) was added dropwise, keeping the internal temperature below +10 °C. This mixture was stirred for 1 h at 0 °C. The solvent was removed in vacuo and the resulting oil was partitioned between water and EtOAc. The aqueous phase was extracted with EtOAc ($2 \times 50 \text{ cm}^3$). Organic extracts were washed with NaHCO₃, brine, and dried (MgSO₄). Removal of the solvent afforded a yellow oil that was chromatographed (40% EtOAc-hexane) to give 3 as a colourless oil (2.06 g, 70%); R_f : 0.37 (50% EtOAc in hexane); $[a]_D^{22}$ = $-40~(c~0.1,~\mathrm{CH_2Cl_2});~\upsilon_{\mathrm{max}}(\mathrm{neat})/\mathrm{cm}^{-1}~3442;~1777;~1696;~\delta_{\mathrm{H}}$ (CDCl₃) 7.5–7.25 (10H, m); 4.75 (1H, m, CHN); 4.6 (2H, s, OCH₂Ph); 4.25 (2H, m, OCH₂CH); 4.1 (1H, m, CHOH); 3.85 (1H, m, CHMe); 3.55 (2H, m); 3.3 (1H, dd, J 3.3 and 13.5, C H_2 Ph); 2.85 (1H, dd, J 9.5 and 13.5, C H_2 Ph); 1.9–1.6 (5H, m); 1.3 (3H, d, J 7, C H_3); $\delta_{\rm C}$ (CDCl $_3$) 177.6 (s); 153.5 (s); 138.7 (s); 135.5 (s); 129.9 (d); 129.4 (d); 128.8 (d); 128.2 (d); 128.14 (d); 128.1 (d); 128.0 (d); 127.9 (d); 73.4 (t); 71.9 (d); 70.6 (t); 66.6 (t); 55.6 (d); 42.8 (d); 38.2 (d); 31.5 (t); 26.8 (t); 11.1 (q); m/z (ES $^+$) 434 (M + Na); m/z (ES) 412.2117 (M + H.C $_{24}$ H $_{30}$ NO $_{5}$ requires: 412.2124).

(4R)-4-Benzyl-3-[(2R,3S)-3,6-dihydroxy-2-methylhexanoyl]-oxazolidin-2-one (4)

A solution of **3** (572 mg, 1.4 mmol) was dissolved in MeOH (50 cm³) and hydrogenated for 2.5 h with 5% Pd–C (200 mg) and 30 Psi H₂ pressure. The catalyst was filtered off and the solvent evaporated to yield **4** as a yellowish oil (434 mg, 97%); R_f : 0.2 (25% hexane in EtOAc); $[a]_D^{20} = -81.8$ (c 0.11, MeOH); v_{max} (neat)/cm⁻¹ 3400; 1780; 1696; δ_H (CDCl₃) 7.5–7.2 (5H, m); 4.85 (1H, m, CHN); 4.35 (2H, m, OCH₂CH); 4.15 (1H, m, CHOH); 4.0–3.75 (3H, m); 3.4 (1H, dd, J 3.3 and 13.5, CH₂Ph); 2.9 (1H, dd, J 9.4 and 13.5, CH₂Ph); 2.6 (2H, br s, 2 × OH); 1.85 (2H, quint, CH₂CH₂CH₂); 1.75 (2H, m); 1.4 (3H, d, J 7, CH₃); δ_C (CDCl₃) 177.3 (s); 153.7 (s); 135.5 (s); 129.9 (d); 129.4 (t); 127.8 (t); 72.2 (d); 66.7 (t); 62.8 (t); 55.6 (d); 43.2 (d); 38.1 (t); 31.6 (t); 29.8 (t); 11.5 (q); m/z (ES⁺) 344 (M + Na).

(2R,3S)-3,6-Dihydroxy-2-methylhexanoic acid benzyl ester (5)

A solution of 4 (453 mg, 1.41 mmol), 3,4-dihydro-2H-pyran (DHP) (0.77 cm³, 8.5 mmol) and PPTS (38 mg, 0.14 mmol) in CH₂Cl₂ (6 cm³) was stirred at rt for 16 h. The reaction was partitioned between CH₂Cl₂ and half-saturated brine. The organic phase was dried (MgSO₄) and concentrated to give a colourless oil (702 mg). The crude THP-protected diol 4 was dissolved in THF (8 cm³) and treated at -5 °C with a BnOLi solution [prepared by addition at 0 °C of nBuLi (4.9 mmol) to a solution of benzyl alcohol (0.58 cm³, 5.6 mmol) in THF (3 cm³)]. After 2 h at 0 °C, the reaction was quenched with saturated NH₄Cl solution (2 cm³). The mixture was partitioned between water and EtOAc and the aqueous phase was extracted with EtOAc (3 × 20 cm³). Combined organic extracts were washed with brine, dried (MgSO₄) and concentrated to give a yellowish oil (1.23 g). This oil was dissolved in 50 cm³ of MeOH and treated with wet Dowex 50X8 resin for 18 h. The resin was filtered off and rinsed with MeOH. The methanolic solution was concentrated in vacuo and the residue was partitioned between EtOAc and brine. The organic phase was dried (MgSO₄) and concentrated to give a crude yellow oil. Chromatography with EtOAc-hexane (3:1) afforded the pure ester 5 as a colourless oil (200 mg, typical yield: 56–77%); R_f : 0.22 (EtOAc-hexane: 3:1); $[a]_D^{23} = -10$ (c 0.1, MeOH); δ_H (CDCl₃) 7.45 (5H, m); 5.2 (2H, s, OCH₂Ph); 3.95 (1H, m, CHOH); 3.70 (2H, m, CH₂OH); 3.20 (1H, br, OH); 2.7 (1H, m, CHMe); 2.4 (1H, br, OH); 1.75 (2H, m); 1.6 (2H, m); 1.3 (3H, d, J7, CH₃); $\delta_{\rm C}$ (CDCl₃) 176.3 (s); 136.1 (s); 129.0 (d); 128.8 (d); 128.6 (d); 72.3 (d); 66.9 (t); 63.1 (t); 45.2 (d); 31.6 (t); 30.0 (t); 11.5 (q); m/z (ES^{+}) 275 (M + Na); m/z (ES) 253.1442 (M + H. $C_{14}H_{21}O_{4}$ requires: 253.1440).

(2*R*,3*S*)-6-(Bis(benzyloxy)phosphoryloxy)-3-hydroxy-2-methylhexanoic acid benzyl ester (6)

Sulfuryl chloride (0.12 cm³,1.5 mmol) was added with a syringe to a flask containing a solution of dibenzyl phosphite (0.33 cm³, 1.5 mmol) in CCl₄ (2 cm³). After 1 h at rt, the volatiles were removed *in vacuo* and the product was used directly without purification. (BnO)₂P(O)Cl (320 mg, 1.3 eq.) was added at 0 °C to the alcohol 5 dissolved in pyridine (2 cm³) under a N₂ atmosphere. The reaction was stirred for 2 h at 0 °C and 1 h at rt. The solvent was removed *in vacuo* and the crude yellow oil was chromatographed with EtOAc–hexane (5:2) to give 6 (247 mg,

60%) as a colourless oil; $R_{\rm f}$: 0.47 (EtOAc–hexane, 3 : 1); $[a]_{\rm D}^{23} = -4.3$ (c 0.23, MeOH); $\delta_{\rm H}$ (CDCl₃) 7.4 (15H, m); 5.2 (2H, s, OC H_2 Ph); 5.1 (2H, d, J 3.3, POC H_2 Ph); 5.08 (2H, d, J 3.3, POC H_2 Ph); 4.06 (2H, m, CH $_2$ C $_2$ CP); 3.9 (1H, m, C $_3$ CHOH); 2.86 (1H, d, J 4.9, O $_3$ H); 2.58 (1H, qd, J 7.2 and 3.8, C $_3$ HMe); 1.85 (1H, m); 1.7 (1H, m); 1.45 (2H, m); 1.23 (3H, d, J 7.2, C $_3$ CH $_3$ C); δ_3 C (CDCl $_3$ C) 176.2 (s); 136.3 (2 × s); 136.1 (s); 129.1 (d); 129.0 (2 × d); 128.8 (d); 128.6 (d); 128.4 (d); 71.7 (d); 69.6 (d, J 7.5, CJCH $_3$ CH $_3$ CH

(2R,3S)-3-Acetoxy-6-bis(benzyloxy)phosphoryloxy-2-methylhexanoic acid benzyl ester (7)

A solution of 6 (80 mg, 0.156 mmol), acetic anhydride (16 µl, 0.17 mmol) and DMAP (4 mg, 0.03 mmol) in pyridine (2 cm³) was stirred for 18 h at rt. Pyridine was removed in vacuo and the crude oil was chromatographed with 50% EtOAc-hexane to afford 7 as a colourless oil (48 mg, 56%); R_f: 0.34 (50% EtOAc– hexane); $[a]_D^{22} = -4$ (c 0.25, MeOH); δ_H (CDCl₃) 7.4 (15H, m); 5.2 (1H, m, CHOAc); 5.13 (2H, s, OCH₂Ph); 5.1 (2H, m, POCH₂Ph); 5.05 (2H, m, POCH₂Ph); 4.0 (2H, m, CH₂CH₂OP); 2.75 (1H, m, CHMe); 2.0 (3H, s, CH₃CO); 1.65 (4H, m); 1.2 (3H, d, J 7.1, CHC H_3); δ_C (CDCl₃) 173.8 (s); 170.89 (s); 136.3 (s); 136.21 (s); 136.16 (s); 129.03 (d); 129.0 (d); 128.84 (d); 128.76 (d); 128.39 (d); 73.86 (d); 69.73 (t); 69.66 (t); 67.7 (J 5.9, CH₂); 67.03 (t); 43.48 (d); 28.35 (t); 26.8 (d, J 7.3, CH₂); 21.2 (q); 12.1 (q); $\delta_{\rm P}$ (CDCl₃) + 0.32; m/z (FAB/3-nitrobenzyl alcohol (NOBA) matrix) 555 (M + H); m/z (FAB) 555.2143 $(M + H. C_{30}H_{36}O_8P \text{ requires: } 555.2148).$

(2R,3S)-6-Bis(benzyloxy)phosphoryloxy-3-methoxy-2-methylhexanoic acid benzyl ester (8a)

A solution of **6** (100 mg, 0.195 mmol), Ag₂O (68 mg, 0.29 mmol) and MeI (0.5 cm³, 8 mmol) in CH₃CN (2.5 cm³) was stirred for 1 day at rt and 3 days at 60–70 °C. The reaction mixture was diluted with CH₂Cl₂ and filtered on a path of Celite. Evaporation of the solvent gave an orange oil that was chromatographed with 50% EtOAc–hexane. The expected product **8a** (20 mg, 39% conversion) was eluted first, then the starting material **6** (50 mg, 50%) and finally the methyl ester by-product **8b** (40 mg, 47%). [a]^{2l} = -2.5 (c 2, MeOH); δ _H (CDCl₃) 7.4 (15H, br s); 5.2 (2H, d, J 4.4, OCH₂Ph); 5.12 (2H, m, POCH₂Ph); 5.09 (2H, m, POCH₂Ph); 4.0 (2H, m, CH $_2$ CP); 3.5 (1H, m, CHOH); 3.3 (3H, s, OCH₃); 2.65 (1H, m, CHMe); 1.9–1.5 (4H, m); 1.2 (3H, d, J 7.2, CHCH₃); δ _P (CDCl₃) + 0.45; m/z (ES⁺) 549 (M + Na); m/z (ES) 527.2195 (M + H. C₂₉H₃₆O₇P requires 527.2198).

(2R,3S)-6-Bis(benzyloxy)phosphoryloxy-3-hydroxy-2-methylhexanoic acid methyl ester (8b)

 $δ_{\rm H}$ (CDCl₃) 7.4 (10H, br s); 5.1 (2H, m, POC H_2 Ph); 5.05 (2H, m, POC H_2 Ph); 4.1 (2H, m, CH $_2$ CH $_2$ OP); 3.9 (1H, m, CHOH); 3.75 (3H, s, COOC H_3); 2.72 (1H, br d, J 4.7, OH); 2.54 (1H, qd, J 3.5 and 7.2, CHMe); 1.9 (1H, m); 1.7 (1H, m); 1.5 (2H, m); 1.2 (3H, d, J 7.1, CH CH_3); $δ_{\rm P}$ (CDCl₃) + 0.5; m/z (ES⁺) 459 (M + Na); m/z (ES⁺) 437.1729 (M + H. C $_{22}$ H $_{30}$ O $_7$ P requires: 437.1729).

(2R,3S)-3-Hydroxy-2-methyl-6-phosphonoxyhexanoic acid (9)

A solution of **6** (54 mg, 0.1 mmol) in MeOH (2 cm³) was hydrogenated for 5 h with 5% Pd–C (12 mg). The catalyst was filtered off and the solvent evaporated to yield a colourless oil (24 mg). Et₂O-mediated precipitation of the product dissolved in a little MeOH yielded **9** as a very hygroscopic colourless solid (24 mg, 94%). $[a]_D^{22} = -8.3$ (c 0.24, MeOH); δ_H (CD₃OD) 4.0 (2H, br m); 3.8 (1H, br m); 2.45 (1H, m); 1.9 (1H, br m); 1.8–1.4 (4H, br m); 1.2 (3H, d, J 7, CH₃); δ_C (CD₃OD) 179.3 (s); 73.5 (d); 68.0 (t);

47.4 (d); 32.6 (t); 28.65 (d, J 7.5, CH_2); 12.9 (q); δ_P (CD₃OD) +1.37; m/z (ES⁻) 241 (M - H); m/z (ES⁻) 241.0478 (M - H. $C_7H_{14}O_7P$ requires 241.0477).

(2R,3S)-3-Acetoxy-2-methyl-6-phosphonoxyhexanoic acid (10)

A suspension of 7 (25 mg, 0.045 mmol) and 5% Pd–C in MeOH (5 cm³) was hydrogenated for 1 h to yield **10** as a colourless oil (16 mg, 100%); $[a]_{\rm D}^{24} = -6.2$ (c 0.16, MeOH); $\delta_{\rm H}$ (CD₃OD) 5.2 (1H, br m); 4.0 (2H, br); 2.7 (1H, m); 2.05 (3H, s, C H_3 CO); 1.8–1.5 (4H, br m); 1.15 (3H, d, J 6.9, CHC H_3); $\delta_{\rm C}$ (CD₃OD) 177.82 (s); 172.84 (s); 75.59 (d); 67.33 (t); 44.75 (d); 30.0 (t); 28.22 (t); 21.28 (q); 12.87 (q); $\delta_{\rm P}$ (CD₃OD) +1.42; m/z (ES⁻) 283 (M – H); m/z (ES⁺) 307.0554 (M + Na. C₉H₁₇NaO₈P requires 307.0559).

(2R,3S)-3-Methoxy-2-methyl-6-phosphonoxyhexanoic acid (11)

A suspension of **8a** (45 mg) and 5% Pd–C in MeOH (4 cm³) was hydrogenated for 22 h at rt to yield **11** as a yellowish oil. $\delta_{\rm H}$ (CD₃OD) 4.0 (2H, br); 3.7 (1H, br d); 3.55 (1H, br m); 3.4 (3H, s, OC H_3); 2.62 (1H, m); 1.9–1.6 (4H, m); 1.15 (3H, d, J7.2, CHC H_3); $\delta_{\rm C}$ (CD₃OD) 179 (s); 83.6 (d); 67.6 (t); 58.6 (q); 44.4 (d); 29.4 (t); 28.0 (t); 12.4 (q); $\delta_{\rm P}$ (CD₃OD) +1.33; m/z (ES⁻) 255 (M – H); m/z (ES⁻) 255.0632 (M – H. C₈H₁₆O₇P requires 255.0638).

(4R)-4-Benzyl-3-{(2R,3S)-4-[(1S)-2,2-dimethyl-[1,3]-dioxolan-4-yl]-3-hydroxy-2-methylbutyryl}oxazolidin-2-one (16)

Dibutylboron triflate (3.55 cm³, 14 mmol) was added dropwise to a solution of (3R)-3-propionyl-4-benzyloxazolidin-2-one (2.995 g, 12.8 mmol) in dry CH₂Cl₂ (20 cm³) at 0 °C, followed by Et₃N (2.1 cm³, 15.4 mmol), keeping the internal temperature below +3 °C. The clear light yellow solution was then cooled to -65 °C and a solution of aldehyde 15 (2.4 g, 16.7 mmol) in CH₂Cl₂ (20 cm³) was added dropwise. The solution was stirred for 40 min at -65 °C and 1 h at -5 °C. The reaction was quenched with pH 7.2 phosphate buffer (20 cm³) and MeOH (40 cm³). Then, 42 cm³ of a 2 : 1 solution of MeOH-H₂O₂ (30% in water) was added dropwise, keeping the internal temperature below +10 °C. This mixture was stirred for 1 h at 0 °C. Solvent was removed in vacuo and the resulting oil was partitioned between water and EtOAc. The aqueous phase was extracted with EtOAc ($2 \times 70 \text{ cm}^3$). Organic extracts were washed with 5% NaHCO₃, brine, and dried (MgSO₄). Removal of the solvent afforded an oil that was chromatographed. The aldol product 16 (2.313 g, 60%) was eluted first (hexane-EtOAc, 50—100%) and then, the deprotected aldol product 17 (790 mg) was eluted with EtOAc-MeOH 10%. 16 is a colourless oil that solidified on standing. R_f : 0.4 (50% EtOAc in hexane); $[a]_D^{23.7}$ = -10.7 (c 0.28, CH₂Cl₂); $\delta_{\rm H}$ (CDCl₃) 7.45–7.2 (5H, m); 4.74 (1H, m, CHN); 4.39 (1H, m); 4.33-4.12 (4H, m, OCH₂CHN, CH₂CH(OH)CH₂(O) and CH(OH)CH₂OC); 3.86 (1H, qd, J 3 and 7, CHMe); 3.65 (1H, dd, J 7.4 and 8.0, CH(OH)CH₂OC); 3.3 (1H, dd, J 3.3 and 13.4,CH₂Ph); 3.24 (1H, br, OH); 2.85 (1H, dd, J 9.4 and 13.4, CH₂Ph); 1.9–1.65 (2H, m, CHCH₂CH); 1.47 (3H, s, CCH₃); 1.42 (3H, s, CCH₃); 1.33 (3H, d, J 7, CHC H_3); δ_C (CDCl₃) 177.6 (s); 153.5 (s); 135.4 (s); 129.9 (d); 129.4 (d); 127.9 (d); 109.2 (s); 73.9 (d); 70.4 (t); 69.1 (d); 66.6 (t); 55.5 (d); 42.9 (d); 38.2 (t); 38.0 (t); 27.4 (q); 26.1 (q); 11.3 (q); m/z (ES⁺) 400 (M + Na); m/z (ES⁺) 378.1910 (M + H. C₂₀H₂₈-NO₆ requires 378.1916).

(4R)-4-Benzyl-3-[(2R,3S)-3,5,6-trihydroxy-2-methylhexanoyl]-oxazolidin-2-one (17)

White foam; Yield: 18%; R_f : 0.18 (EtOAc); $[a]_D^{26} = -141.7$ (c 0.24, MeOH); δ_H (CDCl₃) 7.45–7.2 (5H, m); 4.8 (1H, m, CHN); 4.4–4.2 (3H, m); 4.05 (1H, br m); 3.95–3.5 (4H, m); 3.3 (1H, dd, J 13.3 and 3.3, CH_2 Ph); 2.85 (1H, dd, J 9.3 and 13.3, CH_2 Ph); 2.48 (1H, br s); 1.8–1.4 (3H, m); 1.3 (3H, d, J 7,

CHC H_3); $\delta_{\rm C}$ (CDCl₃) 176.9 (s); 154.0 (s); 135.5 (s); 129.8 (d); 129.3 (d); 127.8 (d); 69.48 (d); 68.88 (d); 66.94 (t); 66.79 (t); 55.7 (d); 43.7 (d); 38.0 (t); 37.7 (t); 12.0 (q); m/z (ES⁺) 360 (M + Na).

Acetonide protection of 17

A solution of 17 (1.5 g, 4.45 mmol) and TsOH (40 mg, 0.21 mmol) in acetone (150 cm³) was stirred for 2 h at rt. A few drops of Et₃N were added and the solvent removed *in vacuo*. The residue was partitioned between EtOAc and 5% NaHCO₃ and the aqueous phase was extracted with EtOAc. The organic extract was washed with brine, dried (MgSO₄) and concentrated to afford the pure acetonide 16 (1.34 g, 80%).

(2R,3S)-4-[(1S)-2,2-Dimethyl-[1,3]-dioxolan-4-yl]-3-hydroxy-2-methylbutyric acid (18)

A 0.05 M solution of the aldol product **16** (410 mg, 1.1 mmol) in 3:1 THF-H₂O (20 cm³) was treated at 0 °C with H₂O₂ (30% in water, 0.5 cm³) followed by lithium hydroxide monohydrate (53 mg, 2.2 mmol). The resulting mixture was stirred for 1 h at ice-bath temperature. Excess peroxide was quenched at 0 °C with 1.5 M Na₂SO₃ (5 cm³) and buffered with 5% NaHCO₃ (2 cm³). The chiral auxiliary was recovered by CH₂Cl₂ extraction (2 \times 20 cm³). The aqueous phase was acidified (pH \sim 2) with 1 M HCl and extracted with EtOAc ($3 \times 20 \text{ cm}^3$). Ethyl acetate extracts were dried (MgSO₄) and concentrated to give the acid **18** as a colourless oil (200 mg, 86%); R_f: 0.2 (EtOAc); $[a]_{D}^{21} = -14.5 (c 2, CH_{2}Cl_{2}); \delta_{H} (CDCl_{3}) 7.5 (1H, br, CO_{2}H); 4.3$ (1H, m, CH(OH)CH₂O); 4.2-4.0 (1H, m, CHOH); 4.05 (1H, dd, J 8.1 and 6.2, CH(OH)CH₂O); 3.5 (1H, dd, J 8.1 and 7.3, CH(OH)CH₂O); 2.55 (1H, m, CHMe); 2.0 (1H, d, OH); 1.6 (2H, m, CHCH₂CH); 1.35 (3H, s, CCH₃); 1.3 (3H, s, CCH₃); 1.15 (3H, d, J 7.2, CHC H_3); δ_C (CDCl₃) 180.2 (s); 109.4 (s); 73.2 (d); 69.8 (t); 69.4 (d); 45.0 (d); 37.8 (t); 27.3 (q); 26.0 (q); 11.4 (q); m/z (ES⁺) 241 (M + Na); m/z (ES) 236.1500 (M + NH₄ C₁₀H₂₂NO₅ requires 236.1498).

(2R,3S)-4-[(1S)-2,2-Dimethyl-[1,3]-dioxolan-4-yl]-3-hydroxy-2-methylbutyric acid benzyl ester (19)

A mixture of the acid 18 (737 mg, 3.38 mmol), benzyl bromide (0.8 cm³, 6.8 mmol) and K₂CO₃ (938 mg, 6.8 mmol) in DMF (15 cm³) was stirred for 16 h at rt. The reaction was diluted with CH₂Cl₂ and inorganic insoluble salts were filtered off (Celite). The filter cake was rinsed with CH2Cl2 and the filtrate was concentrated in vacuo. Chromatography with hexane-EtOAc (4:1) afforded 19 as a colourless oil (810 mg, 78%) (Found: C, 65.74; H, 8.07. C₁₇H₂₄O₅·0.1 H₂O requires C, 65.82; H, 7.80%); $R_{\rm f}$: 0.36 (hexane–EtOAc, 2 : 1); $[a]_{\rm D}^{24} = -3.6$ (c 1.66, CH₂Cl₂); $\delta_{\rm H}$ (CDCl₃) 7.4 (5H, br s); 5.2 (2H, s, OCH₂Ph); 4.34 (1H, m, CH(OH)CH₂O); 4.15 (1H, m, CHOH); 4.05 (1H, dd, J 8.1 and 6, CH(OH)CH₂O); 3.55 (1H, dd, J 8.1 and 7.5, CH(OH)-CH₂O); 3.1 (1H, d, J 4.6, OH); 2.65 (1H, m, CHMe); 1.8–1.6 (2H, m, CHCH₂CH); 1.48 (3H, s, CCH₃); 1.39 (3H, s, CCH₃); 1.28 (3H, d, J 7.2, CHC H_3); δ_C (CDCl₃) 175.9 (s); 136.1 (s); 129.0 (d); 128.8 (d); 128.7 (d); 109.2 (s); 73.9 (d); 70.0 (t); 69.6 (d); 66.8 (t); 45.3 (d); 37.9 (t); 27.4 (q); 26.1 (q); 11.9 (q); *m/z* (ES^{+}) 331 (M + Na).

(2R,3S,5S)-3,5,6-Trihydroxy-2-methylhexanoic acid benzyl ester (20)

A solution of **19** (524 mg, 1.7 mmol) and CuCl₂·2H₂O (1.45 g, 8.5 mmol, 5 eq.) in 'PrOH (20 cm³) was stirred for 2 h at rt. The reaction was quenched with 9.5 cm³ Na₂CO₃ 1 M. When CO₂ evolution had stopped, the reaction mixture was diluted with MeOH and filtered on a path of Celite. The solvent was removed *in vacuo* and the residue was partitioned between EtOAc and water. The aqueous phase was extracted with EtOAc (2 × 40 cm³). Organic extracts were dried (MgSO₄) and concentrated. Chromatography on silica with EtOAc yielded **20**

as a colourless oil that solidified on standing (315 mg, 69%) (Found: C, 62.10; H, 7.48. $C_{14}H_{20}O_5$ requires C, 62.67; H, 7.51%); R_f : 0.28 (EtOAc); $[a]_{1}^{2d} = -22.2$ (c 0.09, MeOH); δ_H (CDCl₃) 7.45 (5H, m); 5.25 (2H, s, OC H_2 Ph); 4.3 (1H, m, CH $_2$ CH(OH)CH $_2$); 4.1 (1H, m, CHCHOH); 3.7 (1H, m); 3.55 (1H, m); 3.5 (1H, br, OH); 3.3 (1H, br, OH); 2.8 (1H, br, OH); 2.72 (1H, m, CHMe); 1.75–1.5 (2H, m, CHC H_2 CH); 1.35 (3H, d, J 7.1, CHC H_3); δ_C (CDCl $_3$) 176.0 (s); 138.0 (s); 129.0 (d); 128.6 (d); 69.5 (d); 69.0 (d); 67.3 (t); 66.9 (t); 45.8 (d); 37.4 (t); 12.2 (q); m/z (ES $^+$) 269 (M + Na); m/z (ES) 269.1388 (M + H. $C_{14}H_{21}O_5$ requires 269.1389).

(2*R*,3*S*,5*S*)-6-[Bis(benzyloxy)phosphoryloxy]-3,5-dihydroxy-2-methylhexanoic acid benzyl ester (21)

Iodine (575 mg, 2.26 mmol) was added at 0 °C to a solution of tribenzyl phosphite ²⁴ (852 mg, 2.4 mmol) in CH₂Cl₂ (7.5 cm³). After 15 min at 0 °C and 10 min at rt, 4 cm³ of the clear solution was added at -78 °C to a solution of **20** (345 mg, 1.29 mmol) and pyridine (0.3 cm³, 3.0 mmol) in CH₂Cl₂ (7 cm³). The reaction was followed by TLC and the rest of the dibenzyl phosphoiodinate was added in 1 cm³ portions (to avoid diphosphorylation) approximately every 30 min. After a total of 5 h at −78 °C, all the reagent (7.5 cm³, 1.8 eq.) had been added and the reaction was diluted with CH₂Cl₂, filtered, washed with water, dried (MgSO₄) and concentrated in vacuo. The crude yellow oil was chromatographed (hexane–EtOAc, 25→100%) to give the phosphate 21 as a colourless oil (370 mg, 54%); R: 0.2 (EtOAc-hexane, 2 : 1); $[a]_D^{22} = -12.5$ (c 0.4, MeOH); $\delta_{\rm H}$ (CDCl₃) 7.4 (15H, br s); 5.18 (2H, s, OC H_2 Ph); 5.12 (2H, m, POCH₂Ph); 5.08 (2H, m, POCH₂Ph); 4.3–3.85 (4H, m); 3.45 (1H, br, OH); 3.3 (1H, br d, J 4.2, OH); 2.65 (1H, m, CHMe); 1.7–1.4 (2H, m, CHC H_2 CH); 1.25 (3H, d, J 7.2, CHC H_3); δ_C $(CDCl_3)$ 176.0 (s); 136.1 (2 × s); 136.0 (s); 129.1 (2 × d); 128.8 (d); 128.6 (d); 128.5 (d); 72.45 (CH₂, J 7.5); 70.05 (CH₂, J 7.5); 68.9 (d); 68.05 (CH, J7.5); 66.8 (t); 45.3 (d); 36.4 (t); 11.9 (q); $\delta_{\mathbf{P}}$ $(CDCl_3) + 1.08$; m/z (ES⁺) 551 (M + Na); m/z (ES) 546.2269 $(M + NH_4. C_{28}H_{37}NO_8P \text{ requires 546.2257}).$

(2R,3S,5S)-3,5-Bis(benzyloxy)-6-bis(benzyloxy)phosphoryloxy)-2-methylhexanoic acid benzyl ester (22)

To a solution of diol 21 (104 mg, 0.2 mmol) and benzyl trichloroacetimidate (0.112 cm³, 0.6 mmol) in CH₂Cl₂ (2.5 cm³) was added 10 drops of an ethereal solution of TfOH (3 drops neat TfOH in 1 cm³ Et₂O). The progress of the reaction was followed by TLC and more ethereal TfOH solution was added after 1 h (0.1 cm^3) , 1 h 25 min (0.3 cm^3) , 2 h $(0.2 \text{ cm}^3 + 1 \text{ drop of neat})$ TfOH). After 5 h, 2 drops of neat TfOH and CCl₃CNHOBn (0.02 cm³, 0.1 mmol) were added to drive the reaction to completion. After an additional 2 h stirring, the reaction was quenched with 5% NaHCO₃ (2 cm³) and partitioned between water and CH₂Cl₂. The aqueous phase was extracted with CH_2Cl_2 (2 × 15 cm³) and the combined organic extracts washed with brine, dried (MgSO₄) and concentrated to a crude white solid. Chromatography (hexane-EtOAc, 25-50%) afforded a mixture of 22 and trichloroacetimidate (same $R_{\rm f}$ as 22) as shown by ¹HNMR. This by-product was crystallised from CHCl₃ (white crystals) and removed by filtration. 22 was isolated as a colourless oil (60 mg, 43%). $[a]_D^{21} = -22 (c 1, CH_2Cl_2);$ $\delta_{\rm H}$ (CDCl₃) 7.5 (25H, m); 5.17 (2H, s); 5.09 (2H, s); 5.06 (2H, s); 4.68 (1H, d, J 11.4); 4.52 (1H, d, J 11.2); 4.34 (2H, d, J 11.4); 4.18 (1H, d, J 11.2); 4.1-3.9 (3H, m); 3.81 (1H, m); 2.86 (1H, m); 1.76 (2H, m); 1.24 (3H, d, J 7, CH_3CH); δ_C (CDCl₃) 174.81 (s); 138.66 (s); 138.59 (s); 136.29 (s); 136.16 (s); 129.01 (d); $128.97 (2 \times d)$; 128.83 (d); 128.74 (d); 128.65 (d); $128.38 (2 \times d)$; 128.35 (d); 128.15 (d); 128.02 (d); 77.20 (d); 74.68 (d, J 7.5, CH); 72.37 (d, J 5.6, CH₂); 69.74 (d, J 5.5, CH₂); 69.52 (t); 69.44 (t); 66.81 (t); 43.34 (d); 35.56 (t); 12.14 (q); δ_{P} (CDCl₃) + 0.46; m/z (ES⁺) 709 (M + H); m/z (ES) 709.2930 (M + H. $C_{42}H_{46}O_8P$ requires 709.2930).

(2R,3S,5S)-3,5-Diacetoxy-6-bis(benzyloxy)phosphoryloxy-2-methylhexanoic acid benzyl ester (23)

A solution of 21 (70 mg, 0.13 mmol), acetic anhydride (40 ul, 0.4 mmol) and DMAP (3 mg, 0.026 mmol) in pyridine (2 cm³) was stirred for 2 h at rt. The solvent was removed in vacuo and the crude oil was partitioned between CH₂Cl₂ and water. The organic phase was dried (MgSO₄) and concentrated to give the pure **23** as an oil (73 mg, 90%); R_f: 0.53 (50% EtOAc–hexane); $[a]_{\rm D}^{23} = -20.3 \ (c \ 0.59, \ {\rm CH_2Cl_2}); \ \delta_{\rm H} \ ({\rm CDCl_3}) \ 7.4 \ (15{\rm H, \ m}); \ 5.25$ (1H, m, CHOAc); 5.15 (2H, s, OCH₂Ph); 5.15-5.0 (5H, m, $2 \times POCH_2Ph$ and CHOAc); 4.15 (1H, m, $CHCH_2OP$); 3.97 (1H, m, CHCH₂OP); 2.75 (1H, m, CHMe); 2.05 (3H, s, CH₃CO); 2.0 (3H, s, CH₃CO); 1.85 (2H, m, CHCH₂CH); 1.2 (3H, d, J7.1, CH_3CH); δ_C (CDCl₃) 172.1 (s); 169.4 (s); 169.3 (s); 134.7 (s); 134.6 (s); 127.6 (d); 127.4 (d); 127.3 (d); 127.0 (d); 126.9 (d); 68.7 (d); 68.4 (2 × t); 67.15 (d, J 7.5, CH₂); 66.75 (d, J 7.5, CH); 65.6 (t); 42.2 (d); 31.0 (t); 19.8 (q); 19.7 (q); 11.1 (q); $\delta_{\rm p}$ (CDCl₂) + 0.35; m/z (ES⁺) 635 (M + Na); m/z (ES) 630.2476 $(M + NH_4. C_{32}H_{41}NO_{10}P \text{ requires } 630.2568).$

(2*R*,3*S*,5*S*)-6-Bis(benzyloxy)phosphoryloxy-3,5-dimethoxy-2-methylhexanoic acid benzyl ester (24)

A solution of diol **21** (50 mg, 0.095 mmol), MeO₃BF₄ (70 mg, 0.47 mmol) and DTBMP (117 mg, 0.57 mmol) in CH₂Cl₂ (3 cm³) was stirred for 3 h at rt. The reaction was diluted with EtOAc and washed successively with 5% NaHCO₃ and brine. The organic phase was dried (Na₂SO₄) and concentrated. Chromatography (hexane–EtOAc, 33 \rightarrow 66%) afforded 11 mg of **24** (21%, R_f : 0.66, hexane–EtOAc, 1 : 2) and 33 mg of **25** (62%, R_f : 0.43, hexane–EtOAc, 1 : 2). [$al_{23}^{D3} = -5$ (c 0.2, CH₂Cl₂); δ_H (CDCl₃) 7.4 (15H, br s); 5.18 (2H, s, OCH₂Ph); 5.11 (2H, m, POCH₂Ph); 5.08 (2H, m, POCH₂Ph); 4.12 (1H, 1/2 ABX, CHCH₂OP); 3.94 (1H, 1/2 ABX, CHCH₂OP); 3.73 (1H, m, CHOMe); 3.53 (1H, m, CHOMe); 3.41 (3H, s, OCH₃); 3.36 (3H, s, OCH₃); 2.76 (1H, m, CHMe); 1.62 (2H, m, CHCH₂CH); 1.2 (3H, d, J 7.1, CH₃CH); δ_P (CDCl₃) + 0.46; m/z (ES⁺) 579 (M + Na); m/z (ES) 557.2305 (M + H. C₃₀H₃₈O₈P requires 557.2304).

(2R,3S,5S)-6-Bis(benzyloxy)phosphoryloxy-5-hydroxy-3-methoxy-2-methylhexanoic acid benzyl ester (25)

 $δ_{\rm H}$ (CDCl₃) 7.4 (15H, br s); 5.19 (2H, s, OC H_2 Ph); 5.12 (2H, m, POC H_2 P); 5.09 (2H, m, POC H_2 P); 4.14 (2H, m, CHC H_2 OP and CHOH); 3.98 (1H, m, CHC H_2 OP); 3.66 (1H, m, CHOMe); 3.43 (3H, s, OC H_3); 2.6 (1H, m, CHMe); 1.57 (2H, m, CHC H_2 CH); 1.25 (3H, d, J 7.2, C H_3 CH); $δ_{\rm C}$ (CDCl₃) 176.3 (s); 136.4 (s); 136.3 (s); 129.2 (2 × d); 129.1 (d); 129.0 (d); 128.9 (d); 128.4 (d); 69.9 (2 × t); 69.0 (t); 68.9 (d); 67.0 (t); 59.0 (d); 58.8 (q); 45.5 (d); 36.0 (t); 11.8 (q); $δ_{\rm P}$ (CDCl₃) + 0.57; m/z (ES) 543.2153 (M + H. C₂₉H₃₆O₈P requires 543.2148).

(2R,3S,5S)-3,5-(Benzylidenedioxy)-6-bis(benzyloxy)phosphoryloxy-2-methylhexanoic acid benzyl ester (26)

A solution of **21** (90 mg, 0.17 mmol); PPTS (171 mg, 0.68 mmol) and benzaldehyde dimethyl acetal (0.25 cm³, 0.68 mmol) in DMF (2 cm³) was stirred for 24 h at rt. At this time, the reaction was not complete and was then heated at ca. 40 °C for 3 h. The reaction was diluted with EtOAc, washed successively with 5% NaHCO₃ and brine, then dried (MgSO₄) and concentrated. Flash chromatography (gradient 0—33% EtOAchexane) afforded **26** as a mixture of 2 diastereoisomers (colourless oil, 74 mg, 71%). R_f : 0.61 (50% EtOAchexane); δ_H (CDCl₃) d 7.55–7.3 (40H, m); 5.85 (1H, s, CHPh); 5.65 (1H, s, CHPh); 5.2 (4H, s, OCH₂Ph); 5.15–5.05 (8H, m, POCH₂Ph); 4.63 (1H, m); 4.5–4.3 (2H, m); 4.3–3.97 (5H, m); 3.38 (1H, m, CHMe); 2.71 (1H, quint, J 7, CHMe); 2.2–1.95 (2H, m); 1.6–1.4 (2H, m); 1.41 (3H, d, J 6.9, CH_3 CH); 1.37 (3H, d, J 7, CH_3 CH); δ_C

(CDCl₃) 174.4 (s); 174.0 (s); 138.7 (s); 138.5 (s); 136.2 (s); 136.1 (s); 136.0 (s); 129.4 (d); 129.2 (2 × d); 129.1 (d); 129.0 (2 × d); 128.8 (2 × d); 128.6 (2 × d); 128.4 (4 × d); 126.6 (d); 126.5 (d); 95.8 (d); 95.0 (d); 74.0 (d); 73.6 (d); 71.4 (d, J 7.5, C H); 70.9 (d, J 7.5, C H); 70.0 (t); 69.93 (t); 69.85 (t); 69.79 (t); 69.75 (t); 69.72 (t); 67.0 (t); 66.8 (t); 66.0 (d, J 6, C H₂); 45.7 (d); 40.0 (d); 28.5 (t); 28.4 (t); 14.9 (q); 13.3 (q); δ_P (CDCl₃) + 0.71; + 0.23; m/z (ES⁺) 634 (M + NH₄); m/z (ES) 634.2572 (M + NH₄) C_{35} H₄₁NO₈P requires 634.2570).

(2R,3S,5S)-6-Bis(benzyloxy)phosphoryloxy-2-methyl-3,5-bis-(tetrahydropyran-2-yloxy)hexanoic acid benzyl ester (27)

A solution of **21** (85 mg, 0.16 mmol), PPTS (20 mg, 0.08 mmol) and 3,4-dihydro-2*H*-pyran (0.15 cm³,1.6 mmol) in CH₂Cl₂ (2.5 cm³) was stirred for 24 h at rt. Solvent was removed *in vacuo* and the residue was chromatographed (0 \rightarrow 70% EtOAc—hexane to afford **27** as a colourless oil (90 mg, 81%). $\delta_{\rm H}$ (acetone-d₆) 7.4–7.2 (15H, m); 5.05–4.95 (6H, m); 4.75–4.2 (2H, m); 4.2–3.65 (6H, m); 3.4–3.15 (2H, m); 2.67 (1H, m); 1.8–1.2 (14H, m); 1.05 (3H, m); $\delta_{\rm P}$ (acetone-d₆) +0.63; +0.53; +0.41; + 0.36; *mlz* (ES⁺) 714 (M + NH₄); *mlz* (ES) 714.3401 (M + NH₄. $C_{38}H_{53}NO_{10}P$ requires 714.3407).

(2R,3S,5S)-3,5-Dihydroxy-2-methyl-6-phosphonoxyhexanoic acid (28)

A suspension of 27 (55 mg) and 5% Pd-C³⁰ (10 mg) in MeOH (5 cm³) was hydrogenated for 30 min at rt. The catalyst was filtered off and the solvent was removed in vacuo. The crude residue was dissolved in THF (5 cm³) and 2 M aqueous HCl (0.5 cm³) was added. The reaction was stirred for 2 h at rt and the solvent was evaporated. The residue dissolved in MeOH was treated with Et₂O and the precipitate was allowed to settle down overnight in the fridge. The solvent was removed with a pasteur pipette and the oily residue dried in vacuo to afford 28 as a yellowish hygroscopic foam (14 mg, 70%); $[a]_D^{24} = -14.28$ (c 0.28, MeOH); $\delta_{\rm H}$ (CD₃OD) 4.1–3.7 (4H, m); 2.4 (1H, m, CHMe); 1.65–1.18 (2H, m, CHCH₂CH); 1.05 (3H, d, J 7.3, CH_3CH); δ_C (CD_3OD) 177.4 (s); 72.2 (t); 70.2 (d); 68.6 (d, d); 47.8 (d); 39.4 (t); 12.5 (q); δ_{P} (CD₃OD) + 1.5 (br); m/z (ES⁻) 257 (M - H); m/z (ES) 281.0400 (M + Na. C₇H₁₅O₈NaP requires: 281.0402).

(2R,3S,5S)-3,5-Diacetoxy-2-methyl-6-phosphonoxyhexanoic acid (29)

Hydrogenolysis of **23** (34 mg, 0.055 mmol) with 10% Pd–C (10 mg) for 16 h afforded **29** as a colourless oil. $[a]_D^{20} = -16.7$ (c 0.24, MeOH); $δ_H$ (CD₃OD) 5.25 (1H, br); 5.05 (1H, br); 4.0 (2H, br m); 2.65 (1H, br m, CHMe); 2.08 (3H, s, CH₃CO); 2.03 (3H, s, CH₃CO); 2.0 (2H, br, CHCH₂CH); 1.15 (3H, d, J 6.9, CH₃CH); $δ_C$ (CD₃OD) 177.4 (s); 172.8 (s); 172.7 (s); 71.8 (d); 70.3 (d); 68.4 (t); 45.4 (d); 34.4 (t); 21.4 (q); 21.2 (q); 13.3 (q); $δ_P$ (CD₃OD) + 1.76; m/z (ES⁻) 341 (M – H); m/z (ES⁻) 341.0642 (M – H. C₁₁H₁₈O₁₀P requires: 341.0638).

Acknowledgements

We gratefully acknowledge the Wellcome Trust for financial support and the EPSRC National Mass Spectrometry Service Centre for accurate mass spectral data.

References

- 1 African trypanosomiasis-WHO Report on Global Surveillance of Epidemic-prone Infectious Diseases. WHO/CDS/CSR/ISR/2000.1, http://www.who.int/emc.
- 2 J. Keiser, A. Stich and C. Burri, Trends Parasitol., 2001, 17, 42.
- 3 (a) F. R. Opperdoes, *Biochem. Soc. Trans.*, 1990, 18, 729; (b)
 F. R. Opperdoes and P. A. M. Michels, *Int. J. Parasitol.*, 2001, 31, 482

- 4 M. P. Barrett, Parasitol. Today, 1997, 13, 11.
- 5 M. P. Barrett and I. H. Gilbert, Curr. Top. Med. Chem., 2002, 2, 471.
- 6 (a) S. Hanau, M. Rippa, M. Bertelli, F. Dallocchio and M. P. Barrett, *Eur. J. Biochem.*, 1996, **240**, 592; (b) M. Rippa, P. P. Giovannini, M. P. Barrett, F. Dallocchio and S. Hanau, *Biochim. Biophys. Acta*, 1998, **1429**, 83.
- 7 (a) C. Phillips, S. Gover and M. J. Adams, *Acta Crystallogr., Sect. D: Biol. Crystallogr.*, 1995, **D51**, 290; (b) M. J. Adams, G. H. Ellis, S. Gover, C. E. Naylor and C. Phillips, *Structure*, 1994, **2**, 651.
- 8 C. Phillips, J. Dohnalek, S. Gover, M. P. Barrett and M. J. Adams, J. Mol. Biol., 1998, 282, 667.
- 9 M. Bertelli, E. El-Bastawissy, M. H. Knaggs, M. P. Barrett, S. Hanau and I. H. Gilbert, *J. Comput. Aided Mol. Des.*, 2001, **15**, 465
- 10 D. A. Evans, Aldrichimica Acta, 1982, 15, 23.
- 11 The scheme related to this synthetic strategy is described in the Supporting Information.
- 12 A. J. Mancuso and D. Swern, Synthesis, 1981, 165.
- 13 D. J. Dixon, S. V. Ley and D. J. Reynolds, *Angew. Chem., Int. Ed.*, 2000, 39, 20–3622 (*Angew. Chem.*, 2000, 112, 3768).
- 14 D. A. Evans, J. V. Nelson, E. Vogel and T. R. Taber, J. Am. Chem. Soc., 1981, 103, 3099.
- 15 J. R. Gage and D. A. Evans, Org. Synth., 1990, 68, 83.
- 16 Dibutylboron triflate was prepared according to the procedure described in ref. 14 and T. Inoue and T. Mukaiyama, *Bull. Chem. Soc. Jpn.*, 1980, 53, 174.
- 17 D. A. Evans, T. C. Britton and J. A. Ellman, *Tetrahedron Lett.*, 1987, 28, 6141.
- 18 D. L. Boger, N.-E. Haynes, M. S. Warren, J. Ramcharan, P. A. Kitos and S. J. Benkovic, *Bioorg. Med. Chem.*, 1997, 5, 1853.

- 19 C. André, J. Bolte and C. Demuynck, *Tetrahedron: Asymmetry*, 1998, **9**, 1359.
- 20 N. Finch, J. J. Fitt and I. H. S. Hsu, J. Org. Chem., 1975, 40, 206.
- 21 (a) A. I. Meyers, J. P. Lawson, D. G. Walker and R. J. Linderman, J. Org. Chem., 1986, 51, 5111; (b) S. Hanessian, A. Ugolini and M. Therien, J. Org. Chem., 1983, 48, 4427; (c) D. L. Boger and T. T. Curran, J. Org. Chem., 1992, 57, 2235.
- 22 The experimental procedure for the synthesis of **15** is reported in the Supporting Information.
- (a) M. Iwata and H. Ohrui, *Bull. Chem. Soc. Jpn*, 1981, **54**, 2837; (b)
 H. B. A. de Bont, J. H. van Boom and R. M. J. Liskamp, *Recl. Trav. Chim. Pays-Bas*, 1992, **111**, 222.
- 24 (a) T. Gefflaut, M. Lemaire, M.-L. Valentin and J. Bolte, J. Org. Chem., 1997, 62, 5920; (b) K. Kis, J. Wungsintaweekul, W. Eisenreich, M. H. Zenk and A. Bacher, J. Org. Chem., 2000, 65, 587
- 25 Lactone 21b (13% yield after chromatography) and (BnO)₃PO (55%) were the two major products isolated in that reaction. Spectroscopic data of 21b are available in the Supporting Information.
- 26 D. C. Billington, R. Baker, J. J. Kulagowski and I. M. Mawer, J. Chem. Soc., Chem. Commun., 1987, 314.
- 27 Y. Watanabe, T. Ogasawara, H. Nakahira, T. Matsuki and S. Ozaki, Tetrahedron Lett., 1988, 29, 5259.
- 28 A. Stewart, C. Bernlind, A. Martin, S. Oscarson, J. C. Richards and E. K. H. Schweda, *Carbohydr. Res.*, 1998, 313, 193.
- 29 Results of the biological assays on 6PGDH and against *T. brucei*, will be reported elsewhere.
- 30 Some authors have described that hydrogenolysis with Pd–C from Aldrich chemical company could cleave a THP protecting group: L. H. Kaisalo and T. A. Hase, *Tetrahedron Lett.*, 2001, 42, 7699. We used 5% Pd–C from Fluka Chemical company to avoid early deprotection.